

The Role of Communications Signal Processing in Storage Systems

J. R. Cruz

Communications Signal Processing Laboratory The University of Oklahoma

06/09/2010

CSPLab

Magnetic Recording

- Magnetic Recording
 - Write process: magnetize the media \rightarrow record user data
 - Read process: sense the magnetic flux change \rightarrow recover user data
- □ Four Technology Generations
 - Longitudinal magnetic recording (LMR) old
 - **Perpendicular magnetic recording (PMR)** state-of-the-art
 - **Bit-patterned magnetic recording (BPMR)** next generation
 - Heat-assisted magnetic recording (HAMR) next generation
 - Two-dimensional magnetic recording (TDMR) future generation

06/09/2010

Bit-Patterned Recording

2D response of island

- Shielded MR or GMR head is assumed
- Approximate $\psi_s(x, z)$ the magnetic potential on ABS
 - Zero potential on shields
 - Full potential on MR element
- Predict $\psi(x, y, z)$, the potential under the head
 - $\psi(x, 0, z) = \psi_s(x, z)$
- The readback voltage (by 3D reciprocity formula) $V(x,z) = C \int_{-\infty}^{\infty} dx' \int_{d}^{d+\delta} dy' \int_{-\infty}^{\infty} dz' \left[\frac{\partial \psi(x',y',z')}{\partial y'} \right] M_{y}(x'-x,y',z'-z)$

06/09/2010

CSPLab

Channel Impairments

Electronic noise ISI & ITI

□Island location jitter

- □Island shape and size fluctuation
- Written-in errors

Belief Propagation

The University of Oklahoma

06/09/2010

- □ *x* is a codeword iff H*x*=0
- Parity-check matrix H
 - Factor graph
 - $x_j \rightarrow$ columns, $c_i \rightarrow$ rows
- Belief-propagation (BP)
 - Channel messages as local evidence
 - Initialize the belief on variable nodes x's by local evidence
 - Row step (checks-to-variables)
 - Column step (variables-to-checks)
 - Repeat the row and column steps till: find a valid codeword or reach the maximum number of iterations

 $\mathbf{H} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$ 0 0 1 0 1 1

 c_1 c_2 c_3

checks-to-variables variables-to-checks c_{i}

CSPLab

Improved BP Decoder

□ Key points of the improved BP (IBP)

- Channel messages L(.) for bits are also needed in the initial run
- Same row step (checks-to-bits) as standard BP
- A correction term is applied in the column step (bits-to-checks)
 - Taking into account the correlations between channel messages
 - Need checks-to-bits information on bits $\underline{\mu}^{(c+1)}$

06/09/2010

 T_x (bit period), T_y (track pitch).

 $\swarrow \xrightarrow{y_k}$ Equalizer

 $\sum_{k=1}^{k}$ Detection

(BCJR

The University of Oklahoma	MTD with	ר 2D Equ	alization	26
Sense 7 tracks			 Read back 5 tracks Recover data on 1 Detect 3 tracks 	track
06/09/2010	-			CSPLab

06/09/2010

Simulation Results

06/09/2010

Acknowledgement

I wish to acknowledge the invaluable contributions of my former student Dr. Wu Chang to the research reported in this presentation.