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Outline

 An Introduction to Storage Systems

Magnetic Tape

Magnetic Hard Disk Drives (HDDs)

Solid State Drives (SDDs)

 Signal Processing and Coding for Read Channels

Low-Density Parity-Check (LDPC) Decoders

Multi-Dimensional Equalizers and Detectors
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Transmission vs. Storage

Digital Transmission Systems

Transport data spatially

Communications channel

Digital Storage Systems

Transport data temporally

Communications (read/write) channel

Historical Drivers

Digital communications and coding➯transmission

Materials and devices➯storage
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Storage Industry Trends
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B. H. Schechtman, “The role of future magnetic tape technology for digital archive, preservation and 
sustainability,” Digital Archive, Preservation and Sustainability Workshop, Baltimore, MD, 2008. 
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Magnetic Recording

 Magnetic Recording

Write process: magnetize the media record user data

Read process: sense the magnetic flux change  recover user data

 Four Technology Generations

Longitudinal magnetic recording (LMR) – old

Perpendicular magnetic recording (PMR) – state-of-the-art

Bit-patterned magnetic recording (BPMR) – next generation

Heat-assisted magnetic recording (HAMR) – next generation

Two-dimensional magnetic recording (TDMR) – future generation
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LMR, PMR and BPMR

 LMR

Along the movement of 
the read head

 PMR

Vertical to the surface

 BPMR

One bit per island

Perpendicularly 
magnetized
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PMR Channel Response

 Isolated transition response s(t)

Magnetic flux changes on transitions, -1  1 or 1-1

Dibit response h(t)=s(t)–s(t–Tb)

 Recording density
Dc = T50/Tb

 User density
Du = R * Dc
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PMR Channel Noise

 Electronic noise (AWGN)

 Media noise (transition noise)

Pulse width jitter

Position jitter

 Position jitter

Time shift

1st order approximation
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Magnetic Media
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Equalized PMR Channels

 Matched filter h(-t), with h(t)=s(t)–s(t–Tb)

 Generalized PR targets: design the equalizer w and the optimized
targets f, by minimizing .
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Bit-Patterned Media

 Extremely high areal density

Small bit period strong ISI

Small track pitch  strong ITI

2D response of isolated island is needed
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Bit-Patterned Recording

 2D response of island

Shielded MR or GMR head is 
assumed

Approximate ψs(x, z) the magnetic 
potential on ABS

Zero potential on shields

Full potential on MR element

Predict ψ(x, y, z), the potential under 
the head

ψ(x, 0, z) = ψs(x, z)

The readback voltage (by 3D 
reciprocity formula)
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Channel Impairments

Electronic noise

ISI & ITI

Island location jitter

Island shape and size fluctuation

Written-in errors
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Coded Read Channel
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 ECC: low-density parity-check (LDPC)  code
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 Equalized channel with PR target f

 Equivalent channel: LDPC coded PR channel

* nk is usually not AWGN
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 x is a codeword iff Hx=0

 Parity-check matrix H

Factor graph

xj columns, cirows

 Belief-propagation (BP)

Channel messages as local evidence

Initialize the belief on variable nodes xj’s by local evidence

Row step (checks-to-variables)

Column step (variables-to-checks)

Repeat the row and column steps till: find a valid codeword or reach
the maximum number of iterations

Belief Propagation
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Sub-Optimal BP Decoding

 Optimal BP decoding

Tree-like graph (cycle-free)

Independent local evidence

 Cycles make BP sub-optimal after a
few iterations

Depends on the girth (the length of
the shortest cycles)

 Issue on PR channels

Correlated channel messages

BP decoding is sub-optimal from the
very first iteration
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Improved BP Decoder

 Key points of the improved BP (IBP)

Channel messages L(.) for bits are also needed in the initial run

Same row step (checks-to-bits) as standard BP

A correction term is applied in the column step (bits-to-checks)

Taking into account the correlations between channel messages

Need checks-to-bits information on bits
( 1)c

17

W. Chang and J. R. Cruz, “An improved belief-propagation decoder for LDPC-coded 

partial-response channels,” IEEE Trans. Magn., to appear, 2010.
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Performance Results

Up to 0.6-dB gain
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BPMR Channel Model

 Simple channel model

Carefully choose Ty so that ITI is mostly caused by the two nearest

side tracks.

ak, bk and ck are {−1, +1}

Matched filter h(−t, 0) = h(t, 0), where h(t, 0) = hx(t)

No media noise (Island location jitter, shape & size fluctuation)

SNR = 1/σ2; σ2=N0/2 of n(t)
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Single-Track Equalization

 1D equalizer: w = [w−N, …, w0, …, wN]T

 1D GPR target: f = [f0, …, fL1−1]
T

 Mean-squared error:

 ITI is treated as additive noise
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Joint-Track Equalization

 Still 1D equalizer: w = [w−N, …, w0, …, wN]T

 2D GPR target: f = [f0, …, fL1−1]
T, g = [g0,

…, gL2−1]
T

 bk and ck have equivalent contribution, so
use dk = bk + ck.

 Mean-squared error

21
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 Read back single track

 Still sense three tracks

 2D detector

 Recover data on    
center track only

W. Tan and J. R. Cruz, “Signal processing for perpendicular recording channels with 

intertrack interference,” IEEE Trans. Magn., vol. 41, no. 2, pp. 730-735, Feb. 2005.
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2D Detection

 Named “joint-track detection” *

 The trellis has multiple inputs: {ak, bk, ck} or {ak, dk}

 The detection of ak on either trellis are equivalent

 Trellis complexity

{ak, bk, ck} trellis: 2(L1–1)×4(L2–1)states; 8 branches from each state

{ak, dk} trellis: 2(L1–1)×3(L2–1) states; 6 branches from each state

 Detection on the {ak, dk} trellis

The BCJR algorithm is used to compute the APPs P(ak, dk | z), by
treating {ak, dk} as one symbol

Get the APP of ak by marginalization

22
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*W. Tan and J. R. Cruz, “Evaluation of detection algorithms for perpendicular recording 

channels with intertrack interference,” J. Mag. Magnetic Materials, vol. 287, pp. 397-404, 

2005.
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Multi-Track Detection

 Basic idea

Read back equalized signal from all three tracks

Perform detection on the two side tracks

The center track detection is aided by the APP information
from the side tracks

Multiple- or single-read head

23
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Simulations Results

 M-JE f3g2: MTD 
with JE on all 
three tracks

 6-dB gain
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2D Equalization
25
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 Read back 3 tracks

 Sense 5 tracks

 1D or 2D GPR 
target

 Detect & recover 
data a0,k on center 
track only

n–1(t), n0(t) and n1(t) are assumed to be independent of each other and have the same

double sided power density height of σ2.
S. Nabavi and B. V. K. Vijaya Kumar, “Two-dimensional generalized partial response 

equalizer for bit-patterned media,” in Proc. IEEE Int. Conf. Commun. (ICC), 2007, 

pp. 6249–6254.
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MTD with 2D Equalization
26

Sense 7 

tracks Detect 3 tracks
Recover data on 1 track

Read back 5 tracks



The University 

of Oklahoma

CSPLab06/09/2010

Simulation Results

 M-2D2D: 2D2D on all 3 
tracks detected

 2D2D has poor 
performance, which 
can be explained by its 
EMSE

 M-2D2D performs 
worse than M-JE, due 
to the poor 
performance of 2D2D
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Performance Bounds

 MTD uses the APPs of the side tracks to help the data 
recovery on the center track.

 The best performance of MTD is achieved if the data on side 
tracks are detected without error

 We simulated the JE and 2D2D channels with known data on 
the side tracks to get the performance limit of MTD

MSE = var{e’k}

When dk is known, the joint trellis defaults to a simple trellis which 
only has memory for ak. The contribution of dk only affects the branch 
values

28
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Performance Results
29

 The performance limits of 
JE and 2D equalization 
with MTD are close 

MSE2D2D<MSEJE, but 
similar

 M-JE recovers most of the 
gain but is simpler than 
M-2D2D

 To achieve the 
performance limits better 
estimation on the side 
tracks is needed
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Summary
30

Equalization
method

Sense 
tracks

Readback 
tracks

Equalizer Target
Detect 
tracks 
(APPs)

Recover  
tracks

SE 3 1 1D 1D 1 1

JE 3 1 1D 2D 1 1

2D1D 5 3 2D 1D 1 1

2D2D 5 3 2D 2D 1 1

MTD-JE 5 3 1D 2D 3 1

MTD-2D 7 5 2D 2D 3 1
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Conclusion

Communications Signal Processing
Enabling technology for extremely high density 
storage

10 Tb/in2 magnetic recording

Bit-patterned media

Heat-assisted recording

Two-dimensional recording
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