

From 4G to 5G

Technology Evolution for a Service Revolution

Instituto Superior Técnico

Outline

- NOS in numbers
- Drivers & Objectives
- Use Cases
- Network Transformation
- 5G @ NOS
- Wrap-up

NOS in numbers

Telecom & Entertainment

TV leader: 1.6M

Mobile subs: 4.5M subs

1.3M banda larga fixa

9M cinema tickets

Growth

TV subs: + 4.5%

Mobile: **+13.2**%

RGUs Enterprise: +18.7%

Cinema: **+21.6**%

Networks

Fixed: 3.8M Households

90% Pop 4G

1M Hotspots WiFi

2016 Results (highlights)

Revenue: 1 515 M€

EBITDA: **557 M€**

Net Profit: 90 M€

CAPEX: 393 M€

Great Place to Work

Brand trust

Mobile Generation's Evolution

1980 - 1G

- Analog systems
- Large terminals
- Several systems
- Voice only

1990 - 2G

- · Digital systems begin
- Smaller Phones
- Several systems
- Lower power consumption
- Low data rate services (SMS, email)

2000 - 3G

- Emergence of smart phones
- Dominated by two standards: UMTS and CDMA2000
- Data rates up to 42 Mbps
- Wide range of services

2010 - 4G

- Widespread adoption of smartphones
- Dominated by LTE/LTE-A standard developed by 3GPP
- Data rates 150+ Mbps
- Rich services

2020 - 5G

- Global 5G standard developed by 3GPP
- · Massive connectivity
- Data rates 1Gbps+ (fibre like speeds)
- Very fast service introduction

N S

5G Drivers & Use Cases

Improved QoE

More bandwidth as streaming video, augmented reality, AI, peer-to-peer gaming prevail

Extreme Mobile Broadband

New Revenue streams

Smartphones penetration reaching saturation. IoT wanted!

Machine to Machine Communications

Next Generation Apps

Self-driving cars to virtual reality

Critical Machine Communications

5G Technical Objectives

Massive Machine Communication (4.5G/5G)

Smart metering

Digital meters, smartgrids

(()) WIRELESS

Nos tests smart meter over new NB-IoT network

Huawei, Janz build first NB-IoT smart meter in partnership with NOS

6 NOVEMBER 2016

Smart cities

Municipalities & E-government

NOS, Oeiras e Nova assinam protocolo para Smart Cities

Depois de Oeiras, é a vez da Câmara de Lagoa passar a usar uma plataforma de gestão de equipamentos e sensores urbanos fornecida pela Nos.

Mobility & Assets Mgmt

Location based information

Extreme Mobile Broadband

Fixed Wireless

Extending fixed services with wireless last mile

Hotspots

Solving capacity & QoE at events, public hotspots, etc.

Legacy 2/3G	
LTE (<6 GHz)	
5G (<6 GHz)	

Smallcells 5G:

3.5 GHz – macro layer 24-29 GHz – smallcells / indoor

VR/AR - Entertainment

VR – contend extension, education AR – advertising, gaming, etc.

Portugal's NOS operator release HoloLens NOS TV app IDC2016, Oct 2016

Critical Machine Communication

Remote Control

Machinery control, healthcare

Traffic control / saphety

Vehicles & robots

Industry 4.0

Cyber-physical systems

Outline

- NOS in numbers
- Drivers & Objectives
- Use Cases
- Network Transformation
- 5G @ NOS
- Wrap-up

4G to 5G Gap – How to get there?

	4G-LTE	5G
Downlink real-world	42 Mb/s	100 Mb/s
Uplink real-world	25 Mb/s	50 Mb/s
Downlink Theoretical	1 GB/s	20 GB/s
Uplink Theoretical	500 MB/s	10 GB/s
Spectral Efficiency (Downlink)	15 bps / Hz	30 bps / Hz
Spectral Efficiency (Uplink)	6.75 bps / Hz	15 bps / Hz
Latency (Control plane)	100 ms	50 ms
Latency (User plane)	10 ms	1 ms

- 1) New radio Interface
- 2) New architecture
- 3) New spectrum & regulation strategies
- 4) NFV & SDN
- 5) Network slicing; One network, all use cases supported

N S

New Radio Interface

Multi-User Massive MIMO

Assumptions: carrier frequency 4GHz; total bandwidth: 200MHz; base station: 256 antenna elements (x-pol), 48dBm Tx power over 200MHz; UE: 4 Tx/Rx antenna elements, 23dBm max. Tx power; full buffer traffic model, 80% indoor and 20% outdoor UEs.

New architecture: Distributed to Virtual RAN (vRAN)

Distributed RAC

BBU – RRU separation on site

Centralised RAN

BBU Hotel or light BBU centralisation with coordination features

Virtual RAN

Virtualisation of L3-up layers in COTS. HW acceleration for L2/L3 interconnection

New architecture: 4G and 5G to converge in vRAN

vRAN for 4G & 5G

L2/L3 split architecture

Non-Stand Alone operation key to 5G

Signalling goes over 4G; 5G is user plane aggregation

Source: Nokia Source: Qualcomm

New Spectrum & Regulation Strategies

5G Spectrum (WRC-19)

- 24.25 27.5 GHz
- 31.8 33.4; 37.0 43.5 GHz
- 45.5 50.2; 50.4 52.6 GHz
- 66 76 GHz, 81 86 GHz

New spectrum regulation strategies (4G & 5G)

- Licensed (sub-6GHz e mmW)
- Anchor licensed + unlicensed (e.g. LAA, LWA)
- Licensed Shared Access
- Unlicensed spectrum only (e.g. MuLTEfire™)

NFV & SDN

Today: Different (monolithic) platforms for different services

- Internet traffic flows across different service
- Services operated on specialized Physical

5G: Converged Cloud Based

- Services that previously required dedicated hardware are abstracted into software functions
- Services will be provisioned and controlled on common infrastructure
- SDN/NFV will unify ALL SERVICES

COTS – Common Off The Shelf hw/servers

Network Slicing & Service Creation

Today:

E2E access dependent service creation

5G: Network slicing will instantiate (via NFV) a network config. for the service target QoS

Source: Ivo-Maljevic-5GSummit-Toronto-1

Outline

- NOS in numbers
- Drivers & Objectives
- Use Cases
- Network Transformation
- 5G @ NOS
- Wrap-up

5G @ NOS is already happening...

Informação Confidencial 19

5G Roadmap

RADIO DEMOS & PPP

- Start 5G PPP
- WRC15 Spectrum > 20 GHz
- Start 3GPP standard 5G

SYSTEM DEMOS & SPEC

- First proposals 5G PPP system level
- Standards evolution standards 5G, layer 1, etc.

FULL SPEC & PREP. TRIALS.

- Standards 3GPP system level
- IMT2020 evaluation
- Olimpic games 5G premier preparation - South Korea

2017

2016

2015

2018

TRIALS PRE-STANDARD

- 3GPP PH1 standards closed
- USA pré launch 28 GHz (Verizon)
- WRC19 preparation new spectrum for 5G

2020

5G READY

 First comercial networks: South Korea & Japan

2019

TRIALS PRE-COMERCIAIS

- 3GPP PH2 standards closed
- IMT2020 (ITU-R) defined
- WRC19 new spectrum definition for 5G

Informação Confidencial 20

Wrap-up

- Growth over 4G seems challenging beyond 2020; even evolutions as high order MIMO will be limited by cost/implementation. A new radio (5G) is required to allow more capacity
- 5G drivers are clearly growth and sustainability; new revenue streams are expected from resilient use cases and lower cost per bit will provide long term benefits
- NOS is starting use case's priorisation and developing its business cases. Spectrum is key to such assessment. Current spectrum cost model strongly affects 5G attractiveness
- 5G approach is likely to be evolutive; while 4G will pay a role as macro national coverage, 5G is likely to be confined to urban areas/ hotspots with specific use cases
- 5G has already started; several technologies, key to 5G are being developed and explored. NFV, SDN and RAN virtualisation are baseline for 5G architecture

From 4G to 5G

Technology Evolution for a Service Revolution

luis.santo@nos.pt

