5G New Radio Mobile Network Testing

MNT Seminar, Lisbon, 7th June 2019

Jerry Carpenter Marketing Manager Rohde & Schwarz Mobile Network Testing

OHDE&SCHWARZ Mobile Network Testing

Contents

Market drivers and key challenges of 5G NR networks 5G NR technology 5G NR network field measurements 5G NR field test solutions Learnings and conclusion

June 2019

5G NR Mobile Network Testing

What is 5G? – It's a paradigm shift

5G is a true use-case driven cellular technology

4G today and 5G technology forecast

I GSA Reports (January '19):

- 712 commercially launched LTE / LTE-Advanced networks in 213 countries (6 networks with cat. 18 speeds (> 1Gbps))
- 201 operators in 83 countries that have launched (limited availability or non-3GPP networks), demonstrated, tested or trialed 5G-enabling and candidate technologies.
- 74 telecom operators in 43 countries have announced intentions of making 5G available to their customers between 2018 and 2022

Source: Ericsson Mobility Report November 2018

5G

3GPP RAN NR Standardization Overview Status after 3GPP RAN #83 (March 2019)

The status of commercial 5G NR deployments

Managing the key RF challenges related to 5G NR RAN

New spectrum

Even 3.5 GHz is different from today's frequencies

Spectrum clearance?

Beamforming and massive MIMO

How does beamforming work?

Flexibility of air interface and gNB configuration

- Bandwidth:
 5, 10, 15, 20, 25, 30, 40, 50, 60,
 80, 100 MHz (FR1)
 50, 100, 200, 400 MHz (FR2)
- Subcarrier Spacing: 15, 30, 60 kHz (FR1) 60, 120, (240) kHz (FR2)
- Mapping onto antenna ports: single beam / multi beam sweeping

New technology elements drive the need for (and complexity of) 5G NR network measurements

5G New Radio (NR) offers a flexible air interface

Summary of key parameters

Changed to 7.125 GHz

Parameter	FR1 (450 MHz -	- 6 CHIZ)		FR2 (24.25 – 52.6 GHz)
Carrier aggregation	Up to 16 carriers			
Bandwidth per carrier	5, 10, 15, 20, 25, 3	0, 40, 50,	60, 80, 90, 100MHz	50, 100, 200, 400 MHz
Subcarrier spacing	15, 30, 60 kHz			60, 120, 240 (not for data) kHz
Max. number of subcarriers	3300 (FFT4096 mandatory)			
Modulation scheme	QPSK, 16QAM, 64QAM, 256QAM; uplink also supports π /2-BPSK (only DFT-s-OFDM)			
Radio frame length	10ms			
Subframe duration	1 ms (alignment at symbol boundaries every 1 ms)			
MIMO scheme	Max. 2 codewords mapped to max 8 layers in downlink and to max 4 layers in uplink			
Duplex mode	TDD, FDD			TDD
Access scheme	DL: CP-OFDM; UL: CP-OFDM, DFT-s-OFDM			

5G Use Cases drive the need to test

Contents

Market drivers and key challenges of 5G NR networks 5G NR technology 5G NR field measurements 5G NR field test solutions Learnings and conclusion

5G Key Technology Components NR builds on four main pillars

How can a UE identify a 5G carrier?

First action of UE looking for 5G cell: search for Synchronization Signals

SSB – in single beam or multi beam configuration

- SSB index is used to separate SSB transmission on different beams (encoded in the MIB)
- Mapping of antenna ports and physical beams to the SSB index can differ between infrastructure suppliers
- SS Bursts can also be repeated (periodicity is given in MIB)

5G NR network measurements need to cope with high flexibility and configurability

Contents

Market drivers and key challenges of 5G NR networks 5G NR technology 5G NR field measurements 5G NR field test solutions Learnings and conclusion

June 2019

5G NR Mobile Network Testing

The 5G NR RF measurement needs

Block diagram for mm-wave and sub 6 GHz measurement setup including TSME6 / TSMA6, simultaneous measurements

Why are SSB measurements essential?

- ∎ The 5G NR UE uses the SSB for
 - Synchronization
 - System information (MIB/SIB)
 - Cell and Beam quality measurements
- One SSB is always transmitted
 - The only Always-On signal in 5G NR
- I Therefore SSB should be used for :
 - Coverage measurement
 - CIR measurement
 - Interference measurement
 - Beamforming evaluation

R&S®TSME6

Finding the SSB is now very easy! 5G NR Automatic Channel Detection

June 2019

- ∎ 5G NR ACD uses fast spectrum sweep
 - Visualized with Grey lines
- Detected SSBs are visualized with blue marker
- 5G NR Scanner configuration updates automatically

ROHDE&SCHWARZ

Mobile Network Testing

Scanner-based 5G NR measurements:

5G Scanner Beam coverage analysis

June 2019

5G NR Mobile Network Testing

26

5G NR Scanner Analysis

Field measurement result SSB / beam ranking

- SSB / beam index
 visualized over time
 (history) and on the map
- Surprisingly good match with horizontal "micro sectors" (SSB beam indices)

June 2019

ROHDE&SCHWARZ

Mobile Network Testing

Field measurement result Coverage

- Expected UE sensitivity:
 ~ -120 dBm (SS-RSRP)
- Surprisingly good SSB coverage in suburban area
- Analog SSB beamforming allows for long radio range

June 2019

ROHDE&SCHWARZ

Mobile Network Testing

Main take-aways from first drive tests in 5G NR networks

Surprisingly good coverage @ 3.75 GHz due to beamforming

-125 dBm (SS-RSRP) Distance: ~ 6.5 km !! In suburban environment

5G NR SSB / beam configurations are very flexible and can be verified by field measurements

June 2019

ROHDE&SCHWARZ

Mobile Network Testing

SSB Beamforming can be verified in field measurements

Mapping beams on SSBs is possible

Number of received SSBs / beams depends on LOS / NLOS scenario

Contents

Market drivers and key challenges of 5G NR networks 5G NR technology 5G NR field measurements 5G NR field test solutions Learnings and conclusion

June 2019

5G NR Mobile Network Testing

30

R&S test solutions for 5G NR mobile network testing

First UE-based 5G NR measurements

ROMES4 measuring on 5G mobile device

5G UE measurements using ROMES

First UE-based 5G NR measurements direcly on a Smartphone

5G UE measurements – QualiPoc Android

5G NR Post Processing in the Cloud

- Use-case driven analytics
- Cloud based or locally installed
- Aggregated data layers +
 High resolution file data
- Intuitive filtering
- ∎ 5G NR Scanner Workspace
 - Best Cell Coverage
 - Best SSB Coverage
 - NR vs 4G Coverage Comparison
 - TopN Details

Mobile Network Testing

ROHDE&SCHWARZ

SS-RSRP Ma

5G NR Scanner Analysis in R&S®SmartAnalytics

T I

SS-SINR Ma

Contents

Market drivers and key challenges of 5G NR networks 5G NR technology 5G NR field measurements Learnings and conclusion

June 2019

5G NR Mobile Network Testing

Conclusion

5G NR Mobile Network Testing

MNT Seminar, Lisbon, 7th June 2019

Questions and where to find more information

Jerry Carpenter Marketing Manager Rohde & Schwarz Mobile Network Testing

ROHDE & SCHWARZ Mobile Network Testing http://www.rohde-schwarz.com/MNT http://blog.mobile-network-testing.com/